主办单位: | 泰迪杯数据挖掘挑战赛组委会 |
承办单位: | 广东泰迪智能科技股份有限公司 |
协办单位: | 人民邮电出版社有限公司 |
北京泰迪云智信息技术研究院 |
互联网、大数据、云计算、人工智能等现代信息技术深刻改变着人类的生产、生活、学习乃至思维方式,深刻展示了世界发展的前景。目前各院校的大数据和人工智能专业教师匮乏、相关落地动手实战应用能力欠缺、授课过程中相关行业实战案例项目缺失等,为加快建设大数据、人工智能相关专业教师队伍,推动各院校建立大数据人才培训体系和评价体系,特推出全国高校大数据与人工智能师资研修班。每年在全国范围内滚动开展,截止目前已在全国巡回举办50余场,参训教师近6000人次。2022年第三期全国高校大数据与人工智能师资研修将开设四大专题方向,本期研修班以线上云课堂形式举办,现将有关安排通知如下:
一、课程特色
1、本研修班课程全程强调动手实操,内容以代码落地为主,以理论讲解为根,以公式推导为辅,通过讲解企业级案例,真正的让学员把所学内容和工作实际有效结合、更好地进行教育教学工作。
2、核心课程部分由讲师手把手一起进行实操演练,在具体应用场景中全面掌握相关技能,助力实训教学工作、实际动手的能力。视频制作精良,讲师真人出镜,全面解析专业必备技能,为相关课程开设和备课、应对科研和项目开发打下坚实基础。
3、课程设有答疑交流讨论群,培训期间助教全程辅助教学,每天提供10小时的实时在线答疑辅导,并进行答疑文档汇总,帮助学员更好地总结学习。
4、本课程配套有基础知识内容,即使零基础学员也能找到适合自己的学习内容和节奏,快速掌握课程知识和技能。
5、所有课程相关源代码、数据、ppt、案例素材全部提供下载,即学即用,教学更轻松!视频内容支持六个月内免费回看,以便复习和参考。
6、全面实践大数据/人工智能项目流程,包括数据采集、数据存储管理、数据探索、数据处理、特征工程、数据建模等课程,提供知识讲解,助力夯实理论基础,掌握核心技术。
7、参加线上课程学习的学员,如后续本人参加线下课程继续深造,持线上缴费凭证可享受一次免费学习机会(仅限参加同一培训专题方向的线下课程)。
二、课程安排
专题一 商务数据分析实战 | 学习时间: 2022年04月20日 - 04月29日,共计80学时 |
证书颁发:高级大 | 费用:1980元(报名费、学习费、资料费、证书费等) |
课程模块:excel数据分析基础与实战、power bi数据分析与可视化 实战案例:广东省区采购数据分析、汽车大数据综合案例分析、新零售智能售货机可视化、学生校园卡消费行为分析 详见附件一:商务数据分析实战课程大纲 |
专题二 数据采集与处理实战 | 学习时间: 2022年04月20日 - 04月28日,共计72学时 |
证书颁发:高级python技术应用工程师 | 费用:1980元(报名费、学习费、资料费、证书费等) |
课程模块:、、pandas数据分析基础、python数据可视化、python网络爬虫实战 数据采集与处理实战:《红海行动》b站弹幕采集与分析、某品牌手机的京东评论数据采集与分析、泰迪内推平台招聘信息采集与分析 拓展自学篇:网站图像素材采集实战 详见附件二 数据采集与处理实战(python)课程大纲 |
专题三 大数据分析与机器学习实战(python) | 学习时间: 2022年04月21日 - 04月30日,共计80学时 |
证书颁发:高级机器学习工程师 | 费用:1980元(报名费、学习费、资料费、证书费等) |
课程模块:、、pandas数据分析基础、python数据可视化、python机器学习实战 实战案例:运营商流失用户分析与预测、百货商场用户画像描绘与价值分析、天猫用户重复购买预测、泰迪内推平台信息精准推荐应用(基于泰迪建模平台实现) 详见附件三:大数据分析与机器学习实战(python)课程大纲 |
专题四 智能语音实战 | 学习时间: 2022年04月21日 - 04月29日,共计72学时 |
证书颁发:高级大数据技术应用 | 费用:2480元(报名费、学习费、资料费、证书费等) |
课程模块:、、python机器学习算法原理与实现、tensorflow2实战、tensorflow2深度学习原理及实战、语音处理实战 实战案例:语音识别中的hmm声学模型、英文数字语音识别、中文语音识别 详见附件四: 智能语音实战课程大纲 |
三、师资介绍
郝志峰 汕头大学校长、教授、博士生导师,泰迪杯数据挖掘挑战赛组委会主任,教育部2018-2022高等学校大学数学课程教学指导委员会副主任委员。入选教育部“新世纪人才支持计划”、广东省“千百十”工程省级人选。郝志峰教授主要从事代数及其应用、数学建模、教育信息化等领域的研究,先后主持nsfc联合基金、教育部霍英东基金、广东省科技攻关重大项目、广东省自然科学基金、国家教育科学“十五”规划项目等省部级以上项目20余项,先后赴美国、英国、德国、日本、泰国和香港等地区访问讲学。曾获教育部自然科学奖二等奖、教育部(原国家教委)霍英东青年教师奖、广东省科技进步奖一等奖等奖项。2009年主持的“大学数学立体化教育资源与集成系统的研究和实践”获国家优秀教学成果奖二等奖。 | |
方海涛 中国科学院数学与系统科学研究院研究员,博士生导师,《控制理论与应用》杂志副主编,泰迪杯数据挖掘挑战赛专家组成员。主要研究兴趣包括:系统估计、优化与控制等。 | |
冯国灿 博士,中山大学数学学院教授,博士生导师。泰迪杯数据挖掘挑战赛组委会委员,中国工业与应用数学会常务理事,广东省工业与应用数学学会理事长,2000-2002英国格莱莫根大学数字图像实验室和布拉德福大学数字媒体实验室做博士后研究员。主要从事模式识别、计算机视觉研究,参加主持包括国家自然科学基金等科学基金20多项,发表学术论文100余篇,入选2014-2019爱斯唯尔计算机科学中国高被引学者排行榜。 | |
张敏 广东泰迪智能科技股份有限公司、培训总监,从事用户数据分析和数据挖掘工作六年,具有丰富得大数据挖掘理论及实践培训经验,对数据具有较高的敏感度,根据数据对其进行全面得统计分析。精通python、r语言、matlab等多种数据挖掘工具。擅长市场发展情况监控、精确营销方面得数据挖掘工作。有为南方电网、珠江数码等大型企业长期提供实施服务得经验,主导了电子商务网站用户行为分析及网页智能推荐服务、中医证型关联规则挖掘、电信业务话单量预测、航空公司客户价值分析等多个项目。2017年"泰迪杯数据挖掘挑战赛教练员培训"主讲讲师,2018年广东省python与深度学习技术师资培训班主讲讲师、2018年第一/三/五期全国高校大数据核心技术与应用师资研修班主讲讲师、2019年第一/二/三期全国高校大数据与人工智能师资研修班主讲讲师,2019年国家电网大数据竞赛河北、湖南省、甘肃省电力系统培训班主讲讲师,先后负责过西安理工大学、广东工业大学、广西师范学院、广西科技大学、闽江学院、广东石油化工学院、上海健康医学院等高校实训课程及德生科技等企业内训和数据挖掘就业班的课程。组织、参与编写图书《》、《》、《r语言编程基础》等。 | |
律波 广东泰迪智能科技股份有限公司高级数据分析工程师,应用统计学硕士,有较强的统计学、数学、数据挖掘理论功底;精通r、python、power bi、excel等数据挖掘分析工具,具有丰富的培训和项目经验,擅长从数据中发掘规律,对数据具有较高的敏感度,逻辑思维能力强,擅长数据可视化,机器学习、深度学习等算法原理的实现,如神经网络、svm、决策树、贝叶斯等;负责"珠江数码大数据营销推荐应用"项目,完成标签库的构建及产品推荐模型;负责"京东电商产品评论情感分析"项目,完成了评论数据情感评价模型、lda主题模型的构建;通过项目案例的转换;负责多个本科类院校数据分析软件培训和毕业生数据分析培训,先后负责广西科技大学、闽江学院、广东石油化工、韩山师范学院、广西师范大学等数据分析软件培训及实训等。多次负责"泰迪杯"数据挖掘大赛题目的构思和实现、赛前培训。大数据专业系列图书编写委员会成员,负责《》、《python实训案例》、《excel可视化案例》等书籍编写工作。 | |
杨惠 广东泰迪智能科技股份有限公司高级,从事人工智能工作多年,擅长计算机视觉和自然语言处理,熟悉常用深度学习算法原理及应用,如神经网络、svm、强化学习等算法;精通tensorflow、python、matlab等常用数据挖掘处理工具。具有丰富的实践项目经验。如"智能聊天客服"项目,"车牌智能识别"项目,"京东电商产品评论情感分析"项目,"珠江数码大数据营销推荐应用"项目;"电子商务网站智能推荐服务"项目;"基于seq2seq注意力模型实现聊天机器人"项目。具备丰富的培训经验,曾为多家企业、院校服务过专业培训工作。如ppv商业培训、泰迪大数据师资培训、珠海城职院数据分析培训;2018年第一/三/五期全国高校大数据核心技术与应用师资研修班主讲讲师,2019年第一/三/五期全国高校大数据与人工智能师资研修班主讲讲师,2019年国家电网大数据竞赛河北省电力系统培训班主讲讲师。大数据专业系列图书编写委员会成员,负责《》、《r语言编程基础》、《tensorflow2深度学习实战》、《深度学习与计算机视觉实战》等书籍编写工作。 | |
陈四德 广东泰迪智能科技股份有限公司高级,统计学专业,对数据统计分析和数据挖掘领域均有较强的理解和理论基础;有造价行业、游戏行业背景和丰富的项目经验,精通行业内的各种指标分析,擅于从多维度分析数据,逻辑性强;擅长python、r语言、mysql数据库等工具,能熟练对数据进行数据处理和分析,掌握常用的数据挖掘算法如分类、聚类等,以及深度学习tensorflow的使用。负责“网站会员流失预测”项目,完成数据处理,模型构建;负责“平台bi埋点数据入库及数据分析”项目,完成数据盘点、数据指标整理和把控;负责“游戏数据分析”项目,完成产出游戏生态日报、客户价值分群结果、用户流失的预警、用户画像指标的完善和维护,项目经验丰富。负责过西安交大城市学院、福建农林大学、国培师资培训、韩山师范学院数据分析就业班、湖南科技职业技术学院、武汉科技大学、广东机电职业技术学院国培、柳州城市职业技术学院第一届大数据职业技能竞赛指导、吉林大学珠海学院等培训项目,授课经验丰富。负责过“泰迪杯”数据挖掘挑战赛出题及赛题指导。 |
四、证书颁发
学员经在线培训并考试合格后,可以获得本期培训对应专题职业技术证书。
五、报名须知与威斯尼斯人0907官方网站的联系方式
1、报名材料:报名申请表、身份证复印件、两寸近期正面免冠彩色半身证件照电子版(要求:白色背景底,14-20k大小的.jpg格式)。
2、本次由广东泰迪智能科技股份有限公司收取费用并开具发票。
3、本期研修班两专题及以上联报者可享受九折优惠。
4、报名威斯尼斯人0907官方网站的联系方式
联系人:曾老师
电话:13246821827
微信:antonia602501
邮箱:zengaizhi@tipdm.com
2022年第三期全国高校大数据与人工智能骨干师资研修班v1.0.7.pdf
全国高校大数据与人工智能师资研修班报名申请表
单位名称 | |||||||
部门/院系 | |||||||
通讯地址 | |||||||
发票抬头 | 发票内容: | ||||||
纳税号 | 电子发票 接收邮箱: | ||||||
联系人 | 电话: | 邮箱: | |||||
以下表格中要求提供的信息为申报职业技术证书使用,请真实完整填写 | |||||||
姓 名 | 性别 | 职务 | 毕业院校 | 最高学历 | 手机号 | 电子邮箱 | 专题选择 |
费用 威斯尼斯人0907官方网站的支付方式 | 1、电汇到指定账户 2、扫码支付(报名后联系工作人员索要支付码) 3、付款时请注明”大数据研修班 单位名称或姓名“字样,方便查账备案 | ||||||
账户信息 | 账户名:广东泰迪智能科技股份有限公司 开户行:中国工商银行广州花城支行 账户号:3602 0285 0920 1663 221 | ||||||
备 注 | 请将报名表发送至邮箱:zengaizhi@tipdm.com 联系人:曾老师 电话:13246821827 微信:antonia602501 | ||||||
附件一 商务数据分析实战课程大纲
核心课程篇 | ||
时间 | 课程内容 | 学习平台 |
专题讲座 | ||
2022年4月20日 18:30 - 22:00 | 主讲:郝志峰 主题内容:大数据视角下数字孪生与元宇宙的思考 主讲:方海涛 主题内容:随机最优控制与人工智能 | 泰迪云课堂 |
第一课 excel数据分析基础与实战 | ||
2022年4月20日 18:30 - 22:00 | 1.1 认识数据分析 1.2 认识excel 2016 2.1 获取文本数据 2.2 从数据库获取数据 3.1 排序 3.2 筛选 3.3 分类汇总 4.1 认识公式和函数 4.2 数组公式 4.3 日期和时间函数 4.4 数学函数 4.5 统计函数 4.6 文本函数 4.7 逻辑函数 5.1 透视表的创建和修改 5.2 透视表的操作 5.3 透视图的操作 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月21日 18:30 - 22:00 | 6.1 对比分析 6.2 趋势分析 6.3 饼图 6.4 散点图 6.5 雷达图 7.1 案例背景 7.2 数据预处理 8 商品销售分析 9 库存分析 10 用户分析 11 分析报告 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第二课 power bi数据分析与可视化 | ||
2022年4月22日 18:30 - 22:00 | 1 数据分析与可视化概述 1.1 认识数据分析(power bi) 1.2 常用数据可视化软件 1.3 认识power bi 2 数据获取 2.1 获取数据的方式 2.2 数据获取 3 m语言数据建模与处理 3.1 编辑器和m语言 3.2 获取网络分页数据 3.3 清洗数据 3.4 数据转换 3.5 规约数据 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月23日 18:30 - 22:00 | 4 数据分析可视化 4.1 可视化 4.2 认识对比分析 4.3 对比分析图表绘制操作 4.4 认识结构分析 4.5 结构分析可视化操作 4.6 相关分析 4.7 相关分析可视化操作 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月24日 18:30 - 22:00 | 4.8 描述性分析 4.9 描述性分析可视化操作 4.10 kpi图表分析 4.11 kpi分析可视化操作 5 数据分析报表 5.1 认识power bi报表 5.2 完整的分析报表:会员数据分析 5.3 完整分析报表的操作 6 power bi移动版数据部署 6.1 移动版发布一份分析报表 6.2 仪表板的使用 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
拓展自学 | ||
自行安排 | 1 dax语言数据处理 1.1 dax语言 1.2 dax语言处理表间关系 1.3 dax函数使用实例 1.4 数据查询操作 | 泰迪云课堂 |
第三课 实战案例:广东省区采购数据分析 | ||
2022年4月25日 18:30 - 22:00 | 1 背景与挖掘目标 2 数据处理 2.1 数据读取、合并 2.2 数据筛选、缺失值处理、数据排序 2.3 采购渠道、时间、数据排序 3 数据分析 3.1 渠道构成分析 3.1.1 渠道内部构成分析 3.1.2 渠道外部构成分析 3.2 行业内外部构成分析 3.3 各行业不同渠道采购额变化趋势 3.3.1 各行业不同渠道采购额随年份的变化趋势 3.3.2 各行业不同渠道采购额随月份、季度的变化趋势 4 小结 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第四课 实战案例:汽车大数据综合案例分析 | ||
2022年4月26日 18:30 - 22:00 | 1 背景介绍 2 分析目标 3 power query读取数据 4 数据预处理 5 市场需求分析 6 消费能力分析 7 企业品牌竞争分析 8 热销车辆分析 9 分析报告 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第五课 实战案例:新零售智能售货机可视化项目 | ||
2022年4月27日 18:30 - 22:00 | 1 了解某公司自动售货机现状 1.1 分析某公司自动售货机现状、步骤与流程 2 数据获取、预处理与建模 2.1 清洗数据、规约数据、数据建模 3 数据分析及可视化 3.1 销售分析及可视化 3.2 库存分析和可视化 3.3 用户分析和可视化 4 数据部署 4.1 整理销售、库存和用户分析报表 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第六课 实战案例:学生校园卡消费行为分析 | ||
2022年4月28日 18:30 - 22:00 | 1 案例背景与目标 1.1 案例背景解读 1.2 挖掘目标分析 2 数据预处理 2.1 预处理:读取数据和异常值 2.2 预处理:缺失值 2.3 预处理:重复值与合并数据 3 数据分析 3.1 食堂消费数据分析 3.2 学生消费行为分析 4 小结 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第七课 在线考试 | ||
2022年4月29日 19:00 - 21:00 | 高级大职业技术在线考试 | 泰迪云课堂 |
附件二 数据分析与处理实战(python)课程大纲
基础篇(报名成功后即可开始学习) | ||
时间 | 课程内容 | 学习平台 |
正式培训前 | 1 准备工作 2 列表操作 3 程序流程控制语句 4 字符串操作 4.1 字符串及其索引&切片 4.2 字符串的常见方法 4.3 字典的创建及索引 4.5 字典推导式 5 python文件读取操作 5.1 python读取文件 5.2 练习3:统计小说中的单词频次 6 函数 6.1 python函数自定义 6.2 练习4:自定义求序列偶数个数的函数 7 面向对象与模块 7.1 python方法与函数对比介绍 7.2 python面向对象示例 7.3 python模块使用 7.4 第三方库的安装与调用 8 注意事项 8.1 python工作路径说明 8.2 模块命名及存放路径的注意事项 8.3 结语 | 泰迪云课堂 |
正式培训前 | 1 python数据分析概述 1.1 认识数据分析 1.2 熟悉python数据分析的工具 1.3 安装anaconda与启动jupyter notebook 1.4 掌握jupyter notebook常用功能 2 numpy数值计算基础 2.1 掌握numpy数值计算基础 2.1.1 numpy简介 2.1.2 数组创建及基础属性 2.1.3 初识数组的特点 2.1.4 创建常用数组 2.1.5 数组数据类型 2.1.6 生成随机数 2.1.7 一维数组的索引 2.1.8 逻辑型索引 2.1.9 多维数组的索引 2.1.10 求解距离矩阵 2.1.11 变化数组shape 2.2 掌握numpy矩阵与通用函数 2.2.1 numpy矩阵介绍 2.2.2 numpy通用函数介绍 2.2.3 通用函数的广播机制 2.3 利用numpy进行统计分析 2.3.1 numpy读写二进制文件 2.3.2 numpy读写txt文件 2.3.3 利用numpy对数据进行简单统计分析 | 泰迪云课堂 |
核心课程篇 | ||
时间 | 课程内容 | 学习平台 |
专题讲座 | ||
2022年4月20日 18:30 - 22:00 | 主讲:郝志峰 主题内容:大数据视角下数字孪生与元宇宙的思考 主讲:方海涛 主题内容:随机最优控制与人工智能 | 泰迪云课堂 |
第一课 pandas数据分析基础 | ||
2022年4月20日 18:30 - 22:00 | 1 pandas统计分析基础 1.1 pandas简介 1.2 读写不同数据源的数据 1.2.1 pandas读取文本数据 1.2.2 存储数据框 1.2.3 pandas读取excel文件 1.2.4 将数据框存储为excel文件 1.3 数据框与数据框元素 1.3.1 构建数据框 1.3.2 查看数据框的常用属性 1.3.3 按行列顺序访问数据框中的元素 1.3.4 按行列名称访问数据框中的元素 1.3.5 修改数据框中的元素 1.3.6 删除数据框中的元素 1.3.7 描述分析数据框中的元素 1.4 转换与处理时间序列数据 1.4.1 转换成时间类型数据 1.4.2 时间类型数据的常用操作 1.5 使用分组聚合进行组内计算 1.5.1 groupby分组操作 1.5.2 agg聚合操作 1.6 创建透视表与交叉表 1.6.1 生成透视表 1.6.2 生成交叉表 2 使用pandas进行数据预处理 2.1 合并数据 2.1.1 表堆叠 2.1.2 主键合并 2.1.3 重叠合并 2.2 清洗数据 2.2.1 检测与处理重复值 2.2.2 检测与处理缺失值 2.2.3 检测与处理异常值 2.3 标准化数据 2.4 转换数据 2.4.1 哑变量处理 2.4.2 离散化连续型数据 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第二课 python数据可视化 | ||
2022年4月21日 18:30 - 22:00 | 1.1 matplotlib绘制流程说明 1.2 添加文本和修改绘图风格 1.3 rc参数 1.4 散点图 1.5 折线图 1.6 直方图和条形图 1.7 饼图 1.8 箱线图 1.9 人口特征间分布 1.10 人口各个特征分布 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
拓展自学篇 | ||
自行安排 | 2.1 seaborn基础介绍 2.2 seaborn简单绘图 2.3 seaborn绘图风格 2.4 调色板1 2.5 调色板2 2.6 关系图 2.7 分类图 2.8 分布图 2.9 回归图 2.10 矩阵图 2.11 网格图 3.1 pyecharts基础介绍 3.2 pyecharts绘制日历图 3.3 pyecharts绘制漏斗图 3.4 pyecharts绘制仪表盘 3.5 pyecharts绘制水球图 3.6 pyecharts绘制关系图 3.7 pyecharts绘制直角坐标系图表 3.8 pyecharts绘制饼图 3.9 pyecharts绘制雷达图 3.10 pyecharts绘制词云图 3.11 pyecharts绘制柱状图 3.12 pyecharts绘制树形图 3.13 pyecharts绘制地理图表 | 泰迪云课堂 |
第三课 python网络爬虫实战 | ||
2022年4月22日 18:30 - 22:00 | 1 python爬虫环境与爬虫简介 1.1 认识爬虫 1.1.1 常见网上冲浪过程 1.1.2 爬虫的概念 1.1.3 爬虫合法性 1.2 认识发爬虫 1.3 配置python爬虫环境 2 网页前端基础 2.1 认识网络信息传输过程 2.1.1 网络传输模型 2.1.2 网络信息传输过程 2.2 认识http 2.2.1 认识http 2.2.2 熟悉cookie 3 简单静态网页爬取 3.1 认识静态网页 3.2 实现http请求 3.2.1 创建工程 3.2.2 生成http请求 3.2.3 完善http请求 3.3 解析网页 3.3.1 为什么要解析网页 3.3.2 初始xpath 3.3.3 xpath相对路径及属性查找 3.3.4 使用beautifulsoup解析网页 3.3.5 网页解析小结 3.4 存储数据 3.4.1 认识chrome开发者工具 3.4.2 任务演练:爬取并存储泰迪科技威尼斯5139手机版官网威尼斯5139手机版首页数据 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月23日 18:30 - 22:00 | 4 认识动态网页 4.1 认识动态网页 4.2 逆向分析爬取动态网页 4.2.1 通过网页源码追踪目标数据文件地址 4.2.2 通过开发者工具追踪目标数据文件地址 4.2.3 爬取数据并进行保存 4.3 使用selenium库爬取动态网页 4.3.1 搭建selenium环境 4.3.2 利用selenium获取网页数据 4.3.3 利用selenium控制点击操作 5 模拟登录 5.1 使用表单登录方法实现模拟登录 5.1.1 模拟登录的过程 5.1.2 查找提交入口和表单数据 5.1.3 提交表单完成模拟登录 5.1.4 使用表单登录的注意事项 5.2 使用cookie登录方法实现模拟登录 5.3 使用selenium模拟登录 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月24日 18:30 - 22:00 | 6 scrapy爬虫 6.1 认识scrapy 6.2 通过scrapy爬取基本页面信息 6.2.1 创建项目 6.2.2 指定字段及创建spiders 6.2.3 完成spiders编写 6.2.4 运行程序保存数据 6.3 通过scrapy抓取跳转页面数据 6.3.1 任务介绍及项目创建 6.3.2 获取所有页面的url 6.3.3 获取每个页面的新闻二次页面url 6.3.4 提取各新闻二次页面中的目标数据 6.3.5 运行程序保存数据 7 拓展:终端协议及爬取工具介绍 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第四课 数据采集与处理实战:《红海行动》b站弹幕采集与分析 | ||
2022年4月25日 18:30 - 22:00 | 1 案例与背景 2 数据采集 2.1 定位弹幕数据文件的位置 2.2 采集弹幕数据 2.3 解析及保存弹幕数据 2.4 弹幕数据采集小结 3 数据处理与分析 3.1 对弹幕内容进行分词 3.2 去除停用词 3.3 统计词频 3.4 绘制词云图 3.5 处理弹幕发送时间数据 3.6 弹幕发布数量分布图 3.7 弹幕发布数量随日期变化图 3.8 其他图形绘制 3.9 从弹幕数量变化看影片情节特点 4 总结 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第五课 数据采集与处理实战:某品牌手机的京东评论数据采集与分析 | ||
2022年4月26日 18:30 - 22:00 | 1 项目背景与挖掘目标 2.1 通过谷歌开发者工具获取url 2.2 发送http请求与转换程json数据 2.3 提取信息并保存到本地 2.4 循环采集数据:保存数据 2.5 循环采集数据:自定义函数 3.1 数据预处理 3.2 数据预处理实现 4.1 评论数据词云绘制 4.2 好评、差评词云绘制与分析 4.3 不同颜色商品购买比例分析 4.4 不同配置商品购买比例分析 4.5 销售数量和评论数量和日期的关系 4.6 销售数量和评论数量和时间的关系 4.7 购买与评论时间间隔统计分析 4.8 不同渠道的销售比例 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第六课 数据采集与处理实战:泰迪内推平台招聘信息采集与分析 | ||
2022年4月27日 18:30 - 22:00 | 1 背景与目标 2 数据采集 2.1 网页结构探索分析 2.2 关键数据爬取 2.3 单页数据爬取 2.4 翻页数据爬取 2.5 数据存储 3 数据清洗与处理 4 招聘数据分析 4.1 学历要求分析 4.2 薪资待遇分析 4.3 技能要求水平 4.4 经验要求分析 5 总结 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
拓展自学篇:网站图像素材采集实战 | ||
自行安排 | 1 思路介绍 2 单个图片文件爬取 3 获取一个页面所有图片网址 4 保存所有图片 5 翻页爬取更多数据 6 pdf文件规律及问题 7 pdf翻页刷新的网址规律 8 获取当前页所有图片网址 9 翻页刷新爬取所有图片 10 图片拼接成pdf文件 | |
第七课 在线考试 | ||
2022年4月28日 19:00 - 21:00 | 高级python技术应用工程师职业技术在线考试 | 泰迪云课堂 |
附件三 大数据分析与机器学习实战(python)课程大纲
基础篇(报名成功后即可开始学习) | ||
时间 | 课程内容 | 学习平台 |
正式培训前 | python编程基础 1 准备工作 2 列表操作 3 程序流程控制语句 4 字符串操作 4.1 字符串及其索引&切片 4.2 字符串的常见方法 4.3 字典的创建及索引 4.4 字典常用操作 4.5 字典推导式 5 python文件读取操作 5.1 python读取文件 5.2 练习3:统计小说中的单词频次 6 函数 6.1 python函数自定义 6.2 练习4:自定义求序列偶数个数的函数 7 面向对象与模块 7.1 python方法与函数对比介绍 7.2 python面向对象示例 7.3 python模块使用 7.4 第三方库的安装与调用 8 注意事项 8.1 python工作路径说明 8.2 模块命名及存放路径的注意事项 8.3 结语 | 泰迪云课堂 |
正式培训前 | 1 python数据分析概述 1.1 认识数据分析 1.2 熟悉python数据分析的工具 1.3 安装anaconda与启动jupyter notebook 1.4 掌握jupyter notebook常用功能 2 numpy数值计算基础 2.1 掌握numpy数组对象 2.1.1 numpy简介 2.1.2 数组创建及基础属性 2.1.3 初始数组的特点 2.1.4 创建常用数组 2.1.5 数组数据类型 2.1.6 生成随机数 2.1.7 一维数组的索引 2.1.8 逻辑型索引 2.1.9 多维数组的索引 2.1.10 求解距离矩阵 2.1.11 变化数组shape 2.2 掌握numpy矩阵与通用函数 2.2.1 numpy矩阵介绍 2.2.2 numpy通用函数介绍 2.2.3 通用函数的广播机制 2.3 利用numpy进行统计分析 2.3.1 numpy读写二进制文件 2.3.2 numpy读写txt文件 2.3.3 利用numpy对数据进行简单统计分析 | 泰迪云课堂 |
核心课程篇 | ||
时间 | 课程内容 | 学习平台 |
专题讲座 | ||
2022年4月21日 18:30 - 22:00 | 主讲:郝志峰 主题内容:大数据视角下数字孪生与元宇宙的思考 主讲:方海涛 主题内容:随机最优控制与人工智能 | 泰迪云课堂 |
第一课 pandas数据分析基础 | ||
2022年4月21日 18:30 - 22:00 | 1 pandas统计分析基础 1.1 pandas简介 1.2 读写不同数据源的数据 1.2.1 pandas读取文本数据 1.2.2 存储数据框 1.2.3 pandas读取excel文件 1.2.4 将数据框存储为excel文件 1.3 数据框与数据框元素 1.3.1 构建数据框 1.3.2 查看数据框的常用属性 1.3.3 按行列顺序访问数据框中的元素 1.3.4 按行列名称访问数据框中的元素 1.3.5 修改数据框中的元素 1.3.6 删除数据框中的元素 1.3.7 描述分析数据框中的元素 1.4 转换与处理时间类型数据 1.4.1 转换成时间类型数据 1.4.2 时间爱类型数据的常用操作 1.5 使用分组聚合进行组内计算 1.5.1 groupby分组操作 1.5.2 agg聚合操作 1.6 创建透视表与交叉表 1.6.1 生成透视表 1.6.2 生成交叉表 2 使用pandas进行数据预处理 2.1 合并数据 2.1.1 表堆叠 2.1.2 主键合并 2.1.3 重叠合并 2.2 清洗数据 2.2.1 检测与处理重复值 2.2.2 检测与处理缺失值 2.2.3 检测与处理异常值 2.3 标准化数据 2.4 转换数据 2.4.1 哑变量处理 2.4.2 离散化连续型数据 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第二课 数据可视化 | ||
2022年4月22日 18:30 - 22:00 | 1.1 matplotlib绘制流程说明 1.2 添加文本和修改绘图风格 1.3 rc参数 1.4 散点图 1.5 折线图 1.6 直方图和条形图 1.7 饼图 1.8 箱线图 1.9 人口特征间分布 1.10 人口各个特征分布 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
拓展自学篇 | ||
自行安排 | 2.1 seaborn基础介绍 2.2 seaborn简单绘图 2.3 seaborn绘图风格 2.4 调色板1 2.5 调色板2 2.6 关系图 2.7 分类图 2.8 分布图 2.9 回归图 2.10 矩阵图 2.11 网格图 3.1 pyecharts基础介绍 3.2 pyecharts绘制日历图 3.3 pyecharts绘制漏斗图 3.4 pyecharts绘制仪表图 3.5 pyecharts绘制水球图 3.6 pyecharts绘制关系图 3.7 pyecharts绘制直角坐标系图表 3.8 pyecharts绘制饼图 3.9 pyecharts绘制雷达图 3.10 pyecharts绘制词云图 3.11 pyecharts绘制柱状图 3.12 pyecharts绘制树形图 3.13 pyecharts绘制地理图表 | 泰迪云课堂 |
第三课 python机器学习实战 | ||
2022年4月23日 18:30 - 22:00 | 1 机器学习绪论 1.1 引言 1.2 基本术语 1.3 假设空间&归纳偏好 2 模型评估与选择 2.1 经验误差与过拟合 2.2 评估方法 2.3 性能度量 2.4 性能度量python实现 3 回归分析 3.1 线性回归基本形式 3.2 线性回归模型的python实现 3.3 波士顿房价预测的python实现 3.4 逻辑回归介绍 3.5 研究生入学录取预测的python实现 4 决策树 4.1 从女性相亲到决策树 4.2 明天适合打球吗? 4.3 决策树拆分属性选择 4.4 决策树算法家族 4.5 泰坦尼克号生还者预测-数据预处理 4.6 泰坦尼克号生还者预测-模型构建与预测 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月24日 18:30 - 22:00 | 5 人工神经网络 5.1 单个神经元介绍 5.2 经典网络结构介绍 5.3 神经网络工作流程演示 5.4 如何修正网络参数-梯度下降法 5.5 网络工作原理推导 5.6 网络搭建准备 5.7 样本从输入层到隐层传输的python实现 5.8 网络输出的python实现 5.9 单样本网络训练的python实现 5.10 全样本网络训练的python实现 5.11 网络性能评价 5.12 调用scikit-learn实现神经网络算法 6 最近邻算法(knn) 6.1 knn算法介绍 6.2 knn算法解决鸢尾花分类问题 7 朴素贝叶斯 7.1 非洲人还是北美人 7.2 为什么有“朴素”二字 7.3 拉普拉斯修正 7.4 用高斯朴素贝叶斯算法解决鸢尾花分类问题 | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月25日 18:30 - 22:00 | 8 聚类分析 8.1 聚类分析概述 8.2 相似性度量 8.3 k-means聚类分析算法介绍 8.4 利用k-means算法对鸢尾花进行聚类 8.5 聚类结果的性能度量 8.6 调用sklearn实现聚类分析 9 集成学习 9.1 集成学习基本概念 9.2 并行集成算法-bagging&randomforest 9.3 串行集成算法-boosting算法流程 9.4 串行集成算法-boosting代码实现 9.5 stacking算法流程 9.6 stacking代码实现 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第四课 实战案例:运营商流失用户分析与预测 | ||
2022年4月26日 18:30 - 22:00 | 1.1 背景与目标 1.2 案例思路分析 2.1 数据探索 2.2 数据去重及删除无关属性 2.3 用户分组及标签构建 2.4 提取用户基本信息和在网时长 2.5 处理合约是否有效 2.6 处理合约计划到期时间 2.7 其余变量处理 2.8 特征拼接及缺失值处理 2.9 数据保存 3.1 特征选择介绍 3.2 皮尔逊特征选择 3.3 处理样本类别不均衡问题 4.1 模型性能评估介绍 4.2 模型构建及性能评估 | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
第五课 实战案例:百货商场用户画像描绘与价值分析 | ||
2022年4月27日 18:30 - 22:00 | 1.1 背景与分析目标 2.1 会员信息表处理 2.2 销售流水表处理 3.1 会员年龄分析 3.2 不同年龄的消费能力 3.3 不同性别的消费情况 3.4 会员和非会员消费情况 3.5 商场会员年消费趋势 3.6 不同月份的消费趋势 3.7 每年每月的消费金额趋势 3.8 不同时刻的消费情况 4.1 用户画像介绍 4.2 会员基本信息标签 4.3 会员消费特征标签 4.4 会员商品偏好标签 4.5 生成用户画像 5.1 会员细分介绍 5.2 k-means算法实现会员聚类 5.3 结果分析 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第六课 综合实战:天猫用户重复购买预测 | ||
2022年4月28日 18:30 - 22:00 | 1.1 背景与挖掘目标 2.1 工程环境准备 2.2 缺失值处理和数据去重 2.3 数据分布探索 3.1 特征工程介绍 3.2 原始特征 3.3.1 用户相关特征:用户在平台的总交互次数 3.3.2 用户相关特征:用户最近一次购买距离第一次的时长 3.4.1 商家相关特征:商家被交互的数量 3.4.2 商家相关特征:商家的复购次数 3.5.1 用户和商家相关特征:用户在商家的交互次数 3.5.2 用户和商家相关特征:不同用户在不同商家购买率 3.6 离散型特征处理 4.1 建模前的数据处理 4.2 模型构建 4.3 模型训练和评估 4.4 模型应用 5 小结 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第七课 泰迪内推平台信息精准推荐应用(基于泰迪建模平台实现) | ||
2022年4月29日 18:30 - 22:00 | 1 背景与目标 2 数据预处理 2.1 数据读取 2.2 数据预处理 2.3 数据拆分 3 模型构建 3.1 模型选型分析 3.2 模型构建 4 模型评价 4.1 模型性能评估 4.2 模型优化 5 部署设置 | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
第八课 在线考试 | ||
2022年4月30日 19:00 - 21:00 | 高级机器学习工程师职业技术在线考试 | 泰迪云课堂 |
附件四 智能语音实战课程大纲
基础篇(报名成功后即可开始学习) | ||
时间 | 课程内容 | 学习平台 |
正式培训前 | 1 准备工作 2 列表操作 3 程序流程控制语句 4 字符串操作 4.1 字符串及其索引&切片 4.2 字符串的常见方法 4.3 字典的创建及索引 4.4 字典常用操作 4.5 字典推导式 5 python文件读取操作 5.1 python读取文件 5.2 练习3:统计小说中的单词频次 6 函数 6.1 python函数自定义 6.2 练习4:自定义求序列偶数个数的函数 7 面向对象与模块 7.1 python方法与函数对比介绍 7.2 python面向对象示例 7.3 python模块使用 7.4 第三方库的安装与调用 8 注意事项 8.1 python工作路径说明 8.2 模块命名及存放路径的注意事项 8.3 结语 | 泰迪云课堂 |
正式培训前 | 1 python数据分析概述 1.1 认识数据分析 1.2 熟悉python数据分析的工具 1.3 安装anaconda与启动jupyter notebook 1.4 掌握jupyter notebook常用功能 2 numpy数值计算基础 2.1 掌握numpy数组对象 2.1.1 numpy简介 2.1.2 数组创建及基础属性 2.1.3 初识数组的特点 2.1.4 创建常用数组 2.1.5 数组数据类型 2.1.6 生成随机数 2.1.7 一维数组的索引 2.1.8 逻辑型索引 2.1.9 多维数组的索引 2.1.10 求解距离矩阵 2.1.11 变化数组shape 2.2 掌握numpy矩阵与通用函数 2.2.1 numpy矩阵介绍 2.2.2 numpy通用函数介绍 2.2.3 通用函数的广播机制 2.3 利用numpy进行统计分析 2.3.1 numpy读写二进制文件 2.3.2 numpy读写txt文件 2.3.3 利用numpy对数据进行简单统计分析 3 matplotlib数据可视化基础 3.1 掌握绘图基础语法与常用参数 3.1.1 matplotlib介绍 3.1.2 基础图形绘制 3.1.3 常用参数设置 3.2 分析特征间关系 3.2.1 绘制散点图 3.2.2 散点图参数设置 3.2.3 绘制折线图 3.3 分析特征内部数据分布与分散情况 3.3.1 绘制直方图 3.3.2 绘制饼图 3.3.3 绘制箱线图 | 泰迪云课堂 |
核心课程篇 | ||
时间 | 课程内容 | 学习平台 |
专题讲座 | ||
2022年4月21日 18:30 - 22:00 | 主讲:郝志峰 主题内容:大数据视角下数字孪生与元宇宙的思考 主讲:方海涛 主题内容:随机最优控制与人工智能 主讲:冯国灿 主题内容:计算机视觉技术及其应用 | 泰迪云课堂 |
第一课 python机器学习算法原理与实现 | ||
2022年4月21日 18:00 - 22:00 | 1 机器学习绪论 1.1 引言 1.2 基本术语 1.3 假设空间&归纳偏好 2 模型评估与选择 2.1 经验误差与过拟合 2.2 评估方法 2.3 性能度量 2.4 性能度量python实现 3 回归分析 3.1 线性回归基本形式 3.2 线性回归模型的python实现 3.3 波士顿房价预测的python实现 3.4 逻辑回归介绍 3.5 研究生入学录取预测的python实现 4 聚类分析 4.1 聚类分析概述 4.2 相似性度量 4.3 k-means聚类分析算法介绍 4.4 利用k-means算法对鸢尾花进行聚类 4.5 聚类结果的性能度量 4.6 调用scikit-learn实现聚类分析 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第二课 tensorflow2实战 | ||
2022年4月22日 18:00 - 22:00 | 1 任务1:构建一个线性模型 1.1 tensorflow2介绍 1.2 tensorflow2常用数据类型和操作 1.3 初始化模型 1.4 构建损失函数 1.5 模型训练及可视化 1.6 使用高阶api-keras 2 任务2:mnist手写数字识别 2.1 数据读取及探索 2.2 交叉熵 2.3 模型构建及训练 2.4 调用保存好的模型对新样本进行预测 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第三课 tensorflow2深度学习原理与实战 | ||
2022年4月23日 18:00 - 22:00 | 1.1 深度神经网络-引言 2 卷积神经网络cnn 2.1 浅层神经网络的局限 2.2 卷积操作 2.3 卷积操作的优势 2.4 池化及全连接 2.5 高维输入及多filter卷积 2.6 实现卷积操作 2.7 实现池化操作 3 循环神经网络rnn 3.1 循环神经网络简介 3.2 循环神经网络的常见结构 4 长短时记忆网络lstm 4.1 lstm的三个门 4.2 lstm三个门的计算示例 4.3 利用rnn&lstm实现mnist手写数字识别 | 泰迪云课堂 |
操作演练 | 个人pc | |
在线答疑 | 微信群 | |
第四课 语音处理实战 | ||
2022年4月24日 18:00 - 22:00 | 1 语音识别概述 1.1 语音识别的概念和应用场景 1.2 语音识别的发展与挑战 1.3 语音识别的通用流程 2 语音集成 2.1 认识语音数据 2.2 音频参数介绍 2.3 wave模块读写语音数据 2.4 librosa模块读写语音数据 2.5 librosa模块常用方法 2.6 录音 2.7 语音播放 2.8 时域&频域 2.9 语音信号波形图 2.10 语音信号频域图 2.11 语音信号频谱图 3 信号处理与特征提取 3.1 端点静音处理 3.2 降噪 3.3 预加重 3.4 分帧 3.5 加窗 3.6 傅里叶变换 3.7 mel滤波器组 3.8 fbank特征 3.9 log-mel spectrogram特征 3.10 梅尔顿频率倒谱系数(mfcc) | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
2022年4月25日 18:30 - 22:00 | 4 常用的语音识别算法介绍 4.1 音素 4.2 字典 4.3 声学模型 4.3.1 gmm hmm模型 4.3.2 dnn hmm模型 4.4 语言模型 4.4.1 n-gram语言模型 4.4.2 rnn语言模型 4.5 端到端的语音识别系统 4.5.1 lstm ctc 4.5.2 dfcnn | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
第五课 实战案例:语音识别中的hmm声学模型 | ||
2022年4月26日 18:00 - 22:00 | 1 案例背景与挖掘目标 2.1 语音特征和数据获取 2.2 语言处理 2.3 mfcc特征提取 3.1 hmm模型 3.2 hmm模型训练 3.3 模型预测 4 小结 | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
第六课 实战案例:英文数字语言识别 | ||
2022年4月27日 18:00 - 22:00 | 1 案例背景和挖掘目标 2.1 语言数据获取 2.2 数据划分 2.3 mfcc特征提取 2.4 mfcc特征处理 2.5 特征维度分析 2.6 标准化和数据保存 2.7 数据预处理总结 3.1 构建网络 3.2 模型编译 3.3 模型训练 3.4 模型训练过程 3.5 模型测试 3.6 课后拓展:模型应用 4 小结 | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
第七课 实战案例:中文语言识别 | ||
2022年4月28日 18:00 - 22:00 | 1 案例背景及挖掘目标 1.1 案例背景 1.2 目标 1.3 数据说明 1.4 实现流程讲解 2 数据探索与预处理 2.1 语音数据加载 2.2 标签数据加载 2.3 语音数据特征提取 2.4 标签数据向量化 3 模型构建 3.1 数据批处理 3.2 模型构建 3.3 回调函数定义 4 模型训练 4.1 模型训练 4.2 模型保存 5 模型评估与调用测试 5.1 模型评估 5.2 模型调用测试 6 小结 | 泰迪云课堂 |
操作演练/作业 | 个人pc | |
在线答疑 | 微信群 | |
第八课 在线考试 | ||
2022年4月29日 19:00 - 21:00 | 高级大数据技术应用职业技术在线考试 | 泰迪云课堂 |